309 research outputs found

    Advanced Concepts and Applications for Predictive Analytics in the Maritime Domain

    Get PDF
    NPS NRP Executive SummaryAdvanced Concepts and Applications for Predictive Analytics in the Maritime DomainN2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Leveraging AI in Support of Decision Superiority – Enabling AI, a System of Systems Approach

    Get PDF
    NPS NRP Executive SummaryLeveraging AI in Support of Decision Superiority – Enabling AI, a System of Systems ApproachN2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Counter Directed Energy Warfare (CDEW)

    Get PDF
    NPS NRP Executive SummaryCounter Directed Energy Warfare (CDEW)Office of Naval Research (ONR)This research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Game Theory and Prescriptive Analytics for Naval Wargaming Battle Management Aids

    Get PDF
    NPS NRP Executive SummaryThe Navy is taking advantage of advances in computational technologies and data analytic methods to automate and enhance tactical decisions and support warfighters in highly complex combat environments. Novel automated techniques offer opportunities to support the tactical warfighter through enhanced situational awareness, automated reasoning and problem-solving, and faster decision timelines. This study will investigate how game theory and prescriptive analytics methods can be used to develop real-time wargaming capabilities to support warfighters in their ability to explore and evaluate the possible consequences of different tactical COAs to improve tactical missions. This study will develop a conceptual design of a real-time tactical wargaming capability. This study will explore data analytic methods including game theory, prescriptive analytics, and artificial intelligence (AI) to evaluate their potential to support real-time wargaming.N2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Game Theory and Prescriptive Analytics for Naval Wargaming Battle Management Aids

    Get PDF
    NPS NRP Technical ReportThe Navy is taking advantage of advances in computational technologies and data analytic methods to automate and enhance tactical decisions and support warfighters in highly complex combat environments. Novel automated techniques offer opportunities to support the tactical warfighter through enhanced situational awareness, automated reasoning and problem-solving, and faster decision timelines. This study will investigate how game theory and prescriptive analytics methods can be used to develop real-time wargaming capabilities to support warfighters in their ability to explore and evaluate the possible consequences of different tactical COAs to improve tactical missions. This study will develop a conceptual design of a real-time tactical wargaming capability. This study will explore data analytic methods including game theory, prescriptive analytics, and artificial intelligence (AI) to evaluate their potential to support real-time wargaming.N2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Game Theory and Prescriptive Analytics for Naval Wargaming Battle Management Aids

    Get PDF
    NPS NRP Project PosterThe Navy is taking advantage of advances in computational technologies and data analytic methods to automate and enhance tactical decisions and support warfighters in highly complex combat environments. Novel automated techniques offer opportunities to support the tactical warfighter through enhanced situational awareness, automated reasoning and problem-solving, and faster decision timelines. This study will investigate how game theory and prescriptive analytics methods can be used to develop real-time wargaming capabilities to support warfighters in their ability to explore and evaluate the possible consequences of different tactical COAs to improve tactical missions. This study will develop a conceptual design of a real-time tactical wargaming capability. This study will explore data analytic methods including game theory, prescriptive analytics, and artificial intelligence (AI) to evaluate their potential to support real-time wargaming.N2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    A Technical Roadmap for Autonomy for Marine Future Vertical Lift (FVL)

    Get PDF
    NPS NRP Executive SummaryThe Marines desire to leverage automation in their next Future Vertical Lift (FVL) platform, meaning they must define the human-FVL teaming interactions. The FVL will operate in a wide spectrum of flight regimes, from remotely piloted, to fully manned, to mostly automatic, and in combinations of the above. This broadened operating approach necessitates that understanding the various human machine teaming interdependent interactions across this diverse operating spectrum be completely delineated. NPS is well positioned to assist. Three approaches are considered: Use Co-active Design, since it is a rigorous engineering process that captures these interactions and interdependencies, develops workflows, and identifies resilient paths for human machine teaming using interdependence analysis (IA); define an FVL 'Living Lab' (LL) that the FVL program management office (PMO) could use to explore technical and concept tradeoffs; establish the cost/benefit relationships of these approaches; and design approaches to developing trust within this operating framework. The topic sponsor desires these techniques so as to create a PMO that decreases the speed at which technical tradeoffs can be identified and made.HQMC Aviation (AVN)This research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    A Technical Roadmap for Autonomy for Marine Future Vertical Lift (FVL)

    Get PDF
    NPS NRP Project PosterThe Marines desire to leverage automation in their next Future Vertical Lift (FVL) platform, meaning they must define the human-FVL teaming interactions. The FVL will operate in a wide spectrum of flight regimes, from remotely piloted, to fully manned, to mostly automatic, and in combinations of the above. This broadened operating approach necessitates that understanding the various human machine teaming interdependent interactions across this diverse operating spectrum be completely delineated. NPS is well positioned to assist. Three approaches are considered: Use Co-active Design, since it is a rigorous engineering process that captures these interactions and interdependencies, develops workflows, and identifies resilient paths for human machine teaming using interdependence analysis (IA); define an FVL 'Living Lab' (LL) that the FVL program management office (PMO) could use to explore technical and concept tradeoffs; establish the cost/benefit relationships of these approaches; and design approaches to developing trust within this operating framework. The topic sponsor desires these techniques so as to create a PMO that decreases the speed at which technical tradeoffs can be identified and made.HQMC Aviation (AVN)This research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Considerations for Cross Domain / Mission Resource Allocation and Replanning

    Get PDF
    NPS NRP Executive SummaryNaval platforms are inherently multi-mission - they execute a variety of missions simultaneously. Ships, submarines, and aircraft support multiple missions across domains, such as integrated air and missile defense, ballistic missile defense, anti-submarine warfare, strike operations, naval fires in support of ground operations, and intelligence, surveillance, and reconnaissance. Scheduling and position of these multi-mission platforms is problematic since one warfare area commander desires one position and schedule, while another may have a completely different approach. Commanders struggle to decide and adjudicate these conflicts, because there is plenty of uncertainty about the enemy and the environment. This project will explore emerging innovative data analytic technologies to optimize naval resource allocation and replanning across mission domains. NPS proposes a study that will evaluate the following three solution concepts for this application: (1) game theory, (2) machine learning, and (3) wargaming. The study will first identify a set of operational scenarios that involve distributed and diverse naval platforms and resources and a threat situation that requires multiple concurrent missions in multiple domains. The NPS team will use these scenarios to evaluate the three solution concepts and their applicability to supporting resource allocation and replanning. This project will provide valuable insights into innovative data analytic solution concepts to tackle the Navy's challenge of conducing multiple missions with cross-domain resources.N2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Considerations for Cross Domain / Mission Resource Allocation and Replanning

    Get PDF
    NPS NRP Technical ReportNaval platforms are inherently multi-mission - they execute a variety of missions simultaneously. Ships, submarines, and aircraft support multiple missions across domains, such as integrated air and missile defense, ballistic missile defense, anti-submarine warfare, strike operations, naval fires in support of ground operations, and intelligence, surveillance, and reconnaissance. Scheduling and position of these multi-mission platforms is problematic since one warfare area commander desires one position and schedule, while another may have a completely different approach. Commanders struggle to decide and adjudicate these conflicts, because there is plenty of uncertainty about the enemy and the environment. This project will explore emerging innovative data analytic technologies to optimize naval resource allocation and replanning across mission domains. NPS proposes a study that will evaluate the following three solution concepts for this application: (1) game theory, (2) machine learning, and (3) wargaming. The study will first identify a set of operational scenarios that involve distributed and diverse naval platforms and resources and a threat situation that requires multiple concurrent missions in multiple domains. The NPS team will use these scenarios to evaluate the three solution concepts and their applicability to supporting resource allocation and replanning. This project will provide valuable insights into innovative data analytic solution concepts to tackle the Navy's challenge of conducing multiple missions with cross-domain resources.N2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.
    corecore